Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.193
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695350

RESUMO

Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.


Assuntos
Proteínas de Bactérias , Lactococcus lactis , Lactococcus lactis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Transferência Ressonante de Energia de Fluorescência , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Osmorregulação , Ligação Proteica , Concentração Osmolar , Microscopia Crioeletrônica , Betaína/metabolismo , Imagem Individual de Molécula , Domínios Proteicos
2.
Cancer Res Commun ; 4(4): 1024-1040, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592451

RESUMO

Non-Hodgkin lymphoma (NHL) is a common cancer in both men and women and represents a significant cancer burden worldwide. Primary effusion lymphoma (PEL) is a subtype of NHL infected with Kaposi sarcoma-associated herpesvirus (KSHV). PEL is an aggressive and lethal cancer with no current standard of care, owing largely to its propensity to develop resistance to current chemotherapeutic regimens. Here, we report a reliance of KSHV-positive PEL on the mitotic kinase, NEK2, for survival. Inhibition of NEK2 with the inhibitor, JH295, resulted in caspase 3-mediated apoptotic cell death of PEL. Furthermore, NEK2 inhibition significantly prolonged survival and reduced tumor burden in a PEL mouse model. We also demonstrate that the ABC transporter proteins, MDR1 and MRP, are most active in PEL and that inhibition of NEK2 in PEL reduced the expression and activity of these ABC transporter proteins, which are known to mediate drug resistance in cancer. Finally, we report that JH295 treatment sensitized lymphomas to other chemotherapeutic agents such as rapamycin, resulting in enhanced cancer cell death. Overall, these data offer important insight into the mechanisms underlying PEL survival and drug resistance, and suggest that NEK2 is a viable therapeutic target for PEL. SIGNIFICANCE: The mitotic kinase, NEK2, is important for the survival of KSHV-positive PEL. NEK2 inhibition resulted in PEL apoptosis and reduced tumor burden in a mouse model. NEK2 inhibition also reduced drug resistance.


Assuntos
Herpesvirus Humano 8 , Linfoma não Hodgkin , Linfoma de Efusão Primária , Masculino , Animais , Camundongos , Humanos , Feminino , Linfoma de Efusão Primária/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP , Agressão , Modelos Animais de Doenças , Quinases Relacionadas a NIMA/genética
3.
Wiad Lek ; 77(2): 262-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592987

RESUMO

OBJECTIVE: Aim: The current study was designed to investigate the role of ABCG5 and ABCG5 in serum with normal and expected cardiac complaints with CVDs as individual early diagnostic tools. PATIENTS AND METHODS: Materials and Methods: Data was collected in paper form and recorded from 100 healthy personals and 100 personals suspected with CVS after take the case history and clinical signs in private clinical hospital and the serum was collected for measurements the activity of ABCG5 and ABCG5 by used ELISA reader and the results illustrated that activity of ABCG5 and ABCG5 in all aged groups. RESULTS: Results: Activity of ABCG5 and ABCG5 in all aged groups periods in patient person male and female significant decrease as compared with same age in same period of live, so that the researched depicted that can used the serum activity of ABCG5 and ABCG5 as a diagnostics tools for atherosclerotic cardiovascular disease. CONCLUSION: Conclusions: We identified areas of further exploration on cholesterol transport related with CVD risk and concluded that changes in the Adenosine Triphosphate Binding Cassette transporters mainly G5 and G8 early diagnostic tools for cardiovascular disease in Human. We correlated areas of farther disquisition on nutrient cholesterol and CVD threat, in the included trials, healthy grown-ups consumed high doses of dietary cholesterol.


Assuntos
Doenças Cardiovasculares , Lipoproteínas , Humanos , Masculino , Feminino , Idoso , Lipoproteínas/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Doenças Cardiovasculares/diagnóstico , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo
4.
Nature ; 628(8009): 901-909, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570679

RESUMO

Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.


Assuntos
Cápsulas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Polissacarídeos Bacterianos , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/química , Cápsulas Bacterianas/ultraestrutura , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Glicolipídeos/química , Glicolipídeos/metabolismo , Hidrólise , Microscopia de Fluorescência , Modelos Moleculares , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/química , Especificidade por Substrato
5.
Biomolecules ; 14(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672415

RESUMO

The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins. These active transporters are involved in the export of different substances such as xenobiotics. ABC transporters from subfamily C (ABCC) have also been described as functional receptors for different insecticidal proteins from Bacillus thuringiensis (Bt) in several lepidopteran species. Numerous studies have characterized the relationship between the ABCC2 transporter and Bt Cry1 proteins. Although other ABCC transporters sharing structural and functional similarities have been described, little is known of their role in the mode of action of Bt proteins. For Heliothis virescens, only the ABCC2 transporter and its interaction with Cry1A proteins have been studied to date. Here, we have searched for paralogs to the ABCC2 gene in H. virescens, and identified two new ABC transporter genes: HvABCC3 and HvABCC4. Furthermore, we have characterized their gene expression in the midgut and their protein topology, and compared them with that of ABCC2. Finally, we discuss their possible interaction with Bt proteins by performing protein docking analysis.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Animais , Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Endotoxinas/genética , Endotoxinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Mariposas/metabolismo , Mariposas/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Simulação de Acoplamento Molecular , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química
6.
Eur Respir J ; 63(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575158

RESUMO

BACKGROUND: Several rare surfactant-related gene (SRG) variants associated with interstitial lung disease are suspected to be associated with lung cancer, but data are missing. We aimed to study the epidemiology and phenotype of lung cancer in an international cohort of SRG variant carriers. METHODS: We conducted a cross-sectional study of all adults with SRG variants in the OrphaLung network and compared lung cancer risk with telomere-related gene (TRG) variant carriers. RESULTS: We identified 99 SRG adult variant carriers (SFTPA1 (n=18), SFTPA2 (n=31), SFTPC (n=24), ABCA3 (n=14) and NKX2-1 (n=12)), including 20 (20.2%) with lung cancer (SFTPA1 (n=7), SFTPA2 (n=8), SFTPC (n=3), NKX2-1 (n=2) and ABCA3 (n=0)). Among SRG variant carriers, the odds of lung cancer was associated with age (OR 1.04, 95% CI 1.01-1.08), smoking (OR 20.7, 95% CI 6.60-76.2) and SFTPA1/SFTPA2 variants (OR 3.97, 95% CI 1.39-13.2). Adenocarcinoma was the only histological type reported, with programmed death ligand-1 expression ≥1% in tumour cells in three samples. Cancer staging was localised (I/II) in eight (40%) individuals, locally advanced (III) in two (10%) and metastatic (IV) in 10 (50%). We found no somatic variant eligible for targeted therapy. Seven cancers were surgically removed, 10 received systemic therapy, and three received the best supportive care according to their stage and performance status. The median overall survival was 24 months, with stage I/II cancers showing better survival. We identified 233 TRG variant carriers. The comparative risk (subdistribution hazard ratio) for lung cancer in SRG patients versus TRG patients was 18.1 (95% CI 7.1-44.7). CONCLUSIONS: The high risk of lung cancer among SRG variant carriers suggests specific screening and diagnostic and therapeutic challenges. The benefit of regular computed tomography scan follow-up should be evaluated.


Assuntos
Neoplasias Pulmonares , Proteína A Associada a Surfactante Pulmonar , Proteína C Associada a Surfactante Pulmonar , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Proteína C Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/genética , Adulto , Fator Nuclear 1 de Tireoide/genética , Transportadores de Cassetes de Ligação de ATP/genética , Fatores de Risco , Predisposição Genética para Doença , Doenças Pulmonares Intersticiais/genética , Heterozigoto , Proteínas Associadas a Surfactantes Pulmonares/genética
7.
Nat Commun ; 15(1): 2626, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521790

RESUMO

BacA is a mycobacterial ATP-binding cassette (ABC) transporter involved in the translocation of water-soluble compounds across the lipid bilayer. Whole-cell-based assays have shown that BacA imports cobalamin as well as unrelated hydrophilic compounds such as the antibiotic bleomycin and the antimicrobial peptide Bac7 into the cytoplasm. Surprisingly, there are indications that BacA also mediates the export of different antibacterial compounds, which is difficult to reconcile with the notion that ABC transporters generally operate in a strictly unidirectional manner. Here we resolve this conundrum by developing a fluorescence-based transport assay to monitor the transport of cobalamin across liposomal membranes. We find that BacA transports cobalamin in both the import and export direction. This highly unusual bidirectionality suggests that BacA is mechanistically distinct from other ABC transporters and facilitates ATP-driven diffusion, a function that may be important for the evolvability of specific transporters, and may bring competitive advantages to microbial communities.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Vitamina B 12 , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Bicamadas Lipídicas , Trifosfato de Adenosina , Transporte Biológico
8.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542082

RESUMO

Intracellular calcium, as a second messenger, is involved in multilevel cellular regulatory pathways and plays a role (among other processes) in switching between survival and initiation of cell death in neoplastic cells. The development of multidrug resistance (MDR) in neoplastic cells is associated with the ability of cells to escape programmed cell death, in which dysregulation of intracellular calcium may play an important role. Therefore, reliable monitoring of intracellular calcium levels is necessary. However, such a role might be limited by a real obstacle since several fluorescent intracellular calcium indicators are substrates of membrane ABC drug transporters. For example, Fluo-3/AM is a substrate of P-glycoprotein (ABCB1 member of the ABC family), whose overexpression is the most frequent cause of MDR. The overexpression of ABCB1 prevents MDR cell variants from retaining this tracer in the intracellular space where it is supposed to detect calcium. The solution is to use a proper inhibitor of P-gp efflux activity to ensure the retention of the tracer inside the cells. The present study showed that Zosuquidar and Tariquidar (P-gp inhibitors) are suitable for monitoring intracellular calcium, either by flow cytometry or confocal microscopy, in cells overexpressing P-gp.


Assuntos
Cálcio , Resistência a Múltiplos Medicamentos , Cálcio/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
9.
Biol Pharm Bull ; 47(4): 750-757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556260

RESUMO

Breast cancer resistance protein (BCRP) is a drug efflux transporter expressed on the epithelial cells of the small intestine and on the lateral membrane of the bile duct in the liver; and is involved in the efflux of substrate drugs into the gastrointestinal lumen and secretion into bile. Recently, the area under the plasma concentration-time curve (AUC) of rosuvastatin (ROS), a BCRP substrate drug, has been reported to be increased by BCRP inhibitors, and BCRP-mediated drug-drug interaction (DDI) has attracted attention. In this study, we performed a ROS uptake study using human colon cancer-derived Caco-2 cells and confirmed that BCRP inhibitors significantly increased the intracellular accumulation of ROS. The correlation between the cell to medium (C/M) ratio of ROS obtained by the in vitro study and the absorption rate constant (ka) ratio obtained by clinical analysis was examined, and a significant positive correlation was observed. Therefore, it is suggested that the in vitro study using Caco-2 cells could be used to quantitatively estimate BCRP-mediated DDI with ROS in the gastrointestinal tract.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Neoplasias/metabolismo , Interações Medicamentosas , Rosuvastatina Cálcica , Trato Gastrointestinal/metabolismo
10.
Sci Adv ; 10(12): eadk8521, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507491

RESUMO

The type I adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter DppABCD is believed to be responsible for the import of exogenous heme as an iron source into the cytoplasm of the human pathogen Mycobacterium tuberculosis (Mtb). Additionally, this system is also known to be involved in the acquisition of tri- or tetra-peptides. Here, we report the cryo-electron microscopy structures of the dual-function Mtb DppABCD transporter in three forms, namely, the apo, substrate-bound, and ATP-bound states. The apo structure reveals an unexpected and previously uncharacterized assembly mode for ABC importers, where the lipoprotein DppA, a cluster C substrate-binding protein (SBP), stands upright on the translocator DppBCD primarily through its hinge region and N-lobe. These structural data, along with biochemical studies, reveal the assembly of DppABCD complex and the detailed mechanism of DppABCD-mediated transport. Together, these findings provide a molecular roadmap for understanding the transport mechanism of a cluster C SBP and its translocator.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Microscopia Crioeletrônica , Proteínas de Bactérias/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(11): e2309841121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442151

RESUMO

The transporter associated with antigen processing (TAP) is a key player in the major histocompatibility class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and triggers its proteasomal degradation. How UL49.5 promotes TAP degradation has, so far, remained unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal. We propose that the C terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the cullin-RING E3 ligase in endoplasmic reticulum-associated degradation.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Degrons , Herpesviridae , Apresentação de Antígeno , Citomegalovirus , Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana Transportadoras , Peptídeos , Ubiquitina-Proteína Ligases/genética , Herpesviridae/fisiologia
12.
Science ; 383(6689): eadj4591, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513023

RESUMO

Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Brassinosteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Conformação Proteica
13.
BMC Genomics ; 25(1): 315, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532362

RESUMO

Transcriptome-wide survey divulged a total of 181 ABC transporters in G. glabra which were phylogenetically classified into six subfamilies. Protein-Protein interactions revealed nine putative GgABCBs (-B6, -B14, -B15, -B25, -B26, -B31, -B40, -B42 &-B44) corresponding to five AtABCs orthologs (-B1, -B4, -B11, -B19, &-B21). Significant transcript accumulation of ABCB6 (31.8 folds), -B14 (147.5 folds), -B15 (17 folds), -B25 (19.7 folds), -B26 (18.31 folds), -B31 (61.89 folds), -B40 (1273 folds) and -B42 (51 folds) was observed under the influence of auxin. Auxin transport-specific inhibitor, N-1-naphthylphthalamic acid, showed its effectiveness only at higher (10 µM) concentration where it down regulated the expression of ABCBs, PINs (PIN FORMED) and TWD1 (TWISTED DWARF 1) genes in shoot tissues, while their expression was seen to enhance in the root tissues. Further, qRT-PCR analysis under various growth conditions (in-vitro, field and growth chamber), and subjected to abiotic stresses revealed differential expression implicating role of ABCBs in stress management. Seven of the nine genes were shown to be involved in the stress physiology of the plant. GgABCB6, 15, 25 and ABCB31 were induced in multiple stresses, while GgABCB26, 40 & 42 were exclusively triggered under drought stress. No study pertaining to the ABC transporters from G. glabra is available till date. The present investigation will give an insight to auxin transportation which has been found to be associated with plant growth architecture; the knowledge will help to understand the association between auxin transportation and plant responses under the influence of various conditions.


Assuntos
Glycyrrhiza , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/genética , Ácidos Indolacéticos/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Estresse Fisiológico/genética , Trifosfato de Adenosina , Regulação da Expressão Gênica de Plantas , Filogenia
14.
Biochim Biophys Acta Biomembr ; 1866(4): 184309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460782

RESUMO

Continual synthesis and remodeling of the peptidoglycan layer surrounding Gram-positive cells is essential for their survival. Diverse antimicrobial peptides target the lipid intermediates involved in this process. To sense and counteract assault from antimicrobial peptides, low G + C content gram-positive bacteria (Firmicutes) have evolved membrane protein complexes known as Bce-modules. These complexes consist minimally of an ABC transporter and a two-component system that work in tandem to perceive and confer resistance against antimicrobial peptides. In this mini-review I highlight recent breakthroughs in comprehending the structure and function of these unusual membrane protein complexes, with a particular focus on the BceAB-RS system present in Bacillus subtilis.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Farmacorresistência Bacteriana , Peptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Percepção
15.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540742

RESUMO

Recently, several ATP-binding cassette (ABC) importers have been found to adopt the typical fold of type IV ABC exporters. Presumably, these importers would function under the transport scheme of "alternating access" like those exporters, cycling through inward-open, occluded, and outward-open conformations. Understanding how the exporter-like importers move substrates in the opposite direction requires structural studies on all the major conformations. To shed light on this, here we report the structure of yersiniabactin importer YbtPQ from uropathogenic Escherichia coli in the occluded conformation trapped by ADP-vanadate (ADP-Vi) at a 3.1 Å resolution determined by cryo-electron microscopy. The structure shows unusual local rearrangements in multiple helices and loops in its transmembrane domains (TMDs). In addition, the dimerization of the nucleotide-binding domains (NBDs) promoted by the vanadate trapping is highlighted by the "screwdriver" action at one of the two hinge points. These structural observations are rare and thus provide valuable information to understand the structural plasticity of the exporter-like ABC importers.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Vanadatos , Conformação Proteica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Trifosfato de Adenosina
16.
Nat Commun ; 15(1): 2389, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493146

RESUMO

Yeast Cadmium Factor 1 (Ycf1) sequesters glutathione and glutathione-heavy metal conjugates into yeast vacuoles as a cellular detoxification mechanism. Ycf1 belongs to the C subfamily of ATP Binding Cassette (ABC) transporters characterized by long flexible linkers, notably the regulatory domain (R-domain). R-domain phosphorylation is necessary for activity, whereas dephosphorylation induces autoinhibition through an undefined mechanism. Because of its transient and dynamic nature, no structure of the dephosphorylated Ycf1 exists, limiting understanding of this R-domain regulation. Here, we capture the dephosphorylated Ycf1 using cryo-EM and show that the unphosphorylated R-domain indeed forms an ordered structure with an unexpected hairpin topology bound within the Ycf1 substrate cavity. This architecture and binding mode resemble that of a viral peptide inhibitor of an ABC transporter and the secreted bacterial WXG peptide toxins. We further reveal the subset of phosphorylation sites within the hairpin turn that drive the reorganization of the R-domain conformation, suggesting a mechanism for Ycf1 activation by phosphorylation-dependent release of R-domain mediated autoinhibition.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cádmio/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Glutationa/metabolismo , Peptídeos/metabolismo
17.
Integr Biol (Camb) ; 162024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38537223

RESUMO

Efflux transporters are a fundamental component of both prokaryotic and eukaryotic cells, play a crucial role in maintaining cellular homeostasis, and represent a key bridge between single cell and population levels. From a biomedical perspective, they play a crucial role in drug resistance (and especially multi-drug resistance, MDR) in a range of systems spanning bacteria and human cancer cells. Typically, multiple efflux transporters are present in these cells, and the efflux transporters transport a range of substrates (with partially overlapping substrates between transporters). Furthermore, in the context of drug resistance, the levels of transporters may be elevated either due to extra or intracellular factors (feedforward regulation) or due to the drug itself (feedback regulation). As a consequence, there is a real need for a transparent systems-level understanding of the collective functioning of a set of transporters and their response to one or more drugs. We develop a systems framework for this purpose and examine the functioning of sets of transporters, their interplay with one or more drugs and their regulation (both feedforward and feedback). Using computational and analytical work, we obtain transparent insights into the systems level functioning of a set of transporters arising from the interplay between the multiplicity of drugs and transporters, different drug-transporter interaction parameters, sequestration and feedback and feedforward regulation. These insights transparently arising from the most basic consideration of a multiplicity of transporters have broad relevance in natural biology, biomedical engineering and synthetic biology. Insight, Innovation, Integration: Innovation: creating a structured systems framework for evaluating the impact of multiple transporters on drug efflux and drug resistance. Systematic analysis allows us to evaluate the effect of multiple transporters on one/more drugs, and dissect associated resistance mechanisms. Integration allows for elucidation of key cause-and-effect relationships and a transparent systems-level understanding of the collective functioning of transporters and their impact on resistance, revealing the interplay of key underlying factors. Systems-level insights include the essentially different behaviour of transporters as part of a group; unintuitive effects of influx; effects of elevated transporter-levels by feedforward and drug-induced mechanisms. Relevance: a systems understanding of efflux, their role in MDR, providing a framework/platform for use in designing treatment, and in synthetic biology design.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Neoplasias , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/farmacologia , Transportadores de Cassetes de Ligação de ATP/uso terapêutico , Resistência a Múltiplos Medicamentos , Transporte Biológico , Neoplasias/tratamento farmacológico , Homeostase
18.
Chem Biol Drug Des ; 103(2): e14490, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38388887

RESUMO

Resistance to 5-fluorouracil (5-FU) is still a primary setback to the success of colorectal cancer (CRC) chemotherapy. Transmembrane protein 97 (TMEM97) functions as an oncogene in CRC. However, the role and mechanism of TMEM97 in regulating 5-FU resistance in CRC cells remains unclear. TMEM97 expression in CRC samples was analyzed by GEPIA and human protein atlas (HPA) databases. TMEM97, E-cadherin, Vimentin, N-cadherin, P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1)/ABCC1, ABCC2, and the changes of protein kinase B/mammalian target of rapamycin (mTOR) pathway were explored by western blot analysis. IC50 value for 5-FU and cell viability was examined by MTT assay. Apoptosis was evaluated by flow cytometry. TMEM97 was highly expressed in colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) based on GEPIA and HPA databases. TMEM97 knockdown attenuated 5-FU resistance in HCT116/R and SW480/R cells, as evidenced by the reduced IC50 value for 5-FU and the increased apoptosis. TMEM97 knockdown suppressed epithelial-mesenchymal transition (EMT), expression of ATP-binding cassette (ABC) transporters, and the Akt/mTOR pathway. Mechanistically, activation of Akt/mTOR pathway abolished the inhibitory effects of TMEM97 knockdown on 5-FU resistance, EMT, and ABC transporter expression. In conclusion, TMEM97 knockdown inhibited 5-FU resistance in CRC by regulating EMT and ABC transporter expression via inactivating the Akt/mTOR pathway.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Fluoruracila/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenocarcinoma/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Serina-Treonina Quinases TOR/metabolismo , Transição Epitelial-Mesenquimal , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
20.
Mol Plant ; 17(3): 478-495, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38327051

RESUMO

ATP-binding cassette (ABC) transporters are integral membrane proteins that have evolved diverse functions fulfilled via the transport of various substrates. In Arabidopsis, the G subfamily of ABC proteins is particularly abundant and participates in multiple signaling pathways during plant development and stress responses. In this study, we revealed that two Arabidopsis ABCG transporters, ABCG16 and ABCG25, engage in ABA-mediated stress responses and early plant growth through endomembrane-specific dimerization-coupled transport of ABA and ABA-glucosyl ester (ABA-GE), respectively. We first revealed that ABCG16 contributes to osmotic stress tolerance via ABA signaling. More specifically, ABCG16 induces cellular ABA efflux in both yeast and plant cells. Using FRET analysis, we showed that ABCG16 forms obligatory homodimers for ABA export activity and that the plasma membrane-resident ABCG16 homodimers specifically respond to ABA, undergoing notable conformational changes. Furthermore, we demonstrated that ABCG16 heterodimerizes with ABCG25 at the endoplasmic reticulum (ER) membrane and facilitates the ER entry of ABA-GE in both Arabidopsis and tobacco cells. The specific responsiveness of the ABCG16-ABCG25 heterodimer to ABA-GE and the superior growth of their double mutant support an inhibitory role of these two ABCGs in early seedling establishment via regulation of ABA-GE translocation across the ER membrane. Our endomembrane-specific analysis of the FRET signals derived from the homo- or heterodimerized ABCG complexes allowed us to link endomembrane-biased dimerization to the translocation of distinct substrates by ABCG transporters, providing a prototypic framework for understanding the omnipotence of ABCG transporters in plant development and stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Dimerização , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Desenvolvimento Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA